Dynamic Boundaries of Event Horizon Magnetospheres

نویسنده

  • Brian Punsly
چکیده

This Letter analyzes 3-dimensional simulations of Kerr black hole magnetospheres that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). Particular emphasis is on the event horizon magnetosphere (EHM) which is defined as the the large scale poloidal magnetic flux that threads the event horizon of a black hole (This is distinct from the poloidal magnetic flux that threads the equatorial plane of the ergosphere, which forms the ergospheric disk magnetosphere). Standard MHD theoretical treatments of Poynting jets in the EHM are predicated on the assumption that the plasma comprising the boundaries of the EHM plays no role in producing the Poynting flux. The energy flux is electrodynamic in origin and it is essentially conserved from the horizon to infinity, this is known as the Blandford-Znajek (B-Z) mechanism. To the contrary, within the 3-D simulations, the lateral boundaries are strong pistons for MHD waves and actually inject prodigious quantities of Poynting flux into the EHM. At high black hole spin rates, strong sources of Poynting flux adjacent to the EHM from the ergospheric disk will actually diffuse to higher latitudes and swamp any putative B-Z effects. This is in contrast to lower spin rates, which are characterized by much lower output powers and modest amounts of Poynting flux are injected into the EHM from the accretion disk corona.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Origins of Causality Violations In Force-Free Simulations of Black Hole Magnetospheres

Recent simulations of force-free, degenerate (ffde) black hole magnetospheres indicate that the fast mode radiated from (or near) the event horizon can modify the global potential difference in the poloidal direction orthogonal to the magnetic field, V, in a black hole magnetosphere. By contrast in MHD (meaning perfect magnetohydrodynamics, hereafter), a combination of Alfven and fast waves are...

متن کامل

“Meissner effect” and Blandford-Znajek mechanism in conductive black hole magnetospheres

The expulsion of axisymmetric magnetic field from the event horizons of rapidly rotating black holes has been seen as an astrophysically important effect that may significantly reduce or even nullify the efficiency of the Blandford-Znajek mechanism of powering the relativistic jets in Active Galactic Nuclei and Gamma Ray Bursts. However, this Meissner-like effect is seen in vacuum solutions of ...

متن کامل

Fast Wave Polarization, Charge Horizons and the Time Evolution of Force-Free Magnetospheres

Numerical simulations of force-free, degenerate (ffde) pulsar and black hole magnetospheres are often based on 1-D characteristics. In particular, the plasma wave polarizations that can be propagated along the 1-D characteristics determine the time evolution of the entire system. There are two sets of characteristics, corresponding to the fast and Alfven modes. The fast wave is generally consid...

متن کامل

Black Hole Magnetospheres around Thin Disks Driving Inward and Outward Winds

We construct a simple model for stationary, axisymmetric black-hole magnetospheres, in which the poloidal magnetic field is generated by a toroidal electric current in a thin disk with the inner edge, by solving the vacuum Maxwell equations in Schwarzschild background. In this work, to obtain a concise analytical form of the magnetic stream function, we use the approximation that the inner edge...

متن کامل

General relativistic MHD simulations of monopole magnetospheres of black holes

In this paper we report the results of the first ever time-dependent general rela-tivistic magnetohydrodynamic simulations of the magnetically dominated monopole magnetospheres of black holes. It is found that the numerical solution evolves towards a stable steady-state solution which is very close to the corresponding force-free solution found by Blandford and Znajek. Contrary to the recent cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008